Substitution reactions of diphenyl-2-pyridylphosphine with $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathbf{M}(\mu-\mathrm{Cl}) \mathbf{C l}\right]_{2}(\mathbf{M}=\mathbf{R h}$ or $\mathbf{I r})$ dimers: Isolation of mono-, di- and chelating complexes

PADAVATTAN GOVINDASWAMY ${ }^{\text {a }}$, PATRICK J CARROLL ${ }^{\text {b }}$, YURIJ A MOZHARIVSKYJ ${ }^{\text {c }}$ and MOHAN RAO KOLLIPARA ${ }^{\text {a, }}$ *
${ }^{\text {a D Department of Chemistry, North-Eastern Hill University, Shillong } 793022}$
${ }^{\text {b }}$ Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania PA 19104, USA
${ }^{\text {c Department of Chemistry, McMaster University, Hamilton, Ontario, L8S 4M1, Canada }}$
e-mail: mohanrao59@hotmail.com; mohanraokollipara@yahoo.co.in

MS received 30 March 2006; revised 3 July 2006

Abstract

The reaction of $\left[\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{M}(\mu-\mathrm{Cl}) \mathrm{Cl}\right\}_{2}\right]\{$ where $\mathrm{M}=\operatorname{Rh}(\mathbf{1})$, Ir (2) $\}$ with functionalized phosphine viz., diphenyl-2-pyridylphosphine ($\mathrm{PPh}_{2} \mathrm{Py}$) in dichloromethane solvent yield neutral K^{1}-Pcoordinated rhodium and iridium complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\left(\kappa^{1}-\mathrm{P}_{-} \mathrm{PPh}_{2} \mathrm{Pyy}^{2}\right] \mathbf{3}\right.$ and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right.$ $\left.\mathrm{IrCl}_{2}\left(\kappa^{1}-\mathrm{P}-\mathrm{PPh}_{2} \mathrm{Py}\right)\right]$ 4. Reaction of complexes 1 and 2 with the ligand $\mathrm{PPh}_{2} \mathrm{Py}$ in methanol under reflux give bis-substituted complexes such as $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}\left(\kappa^{1}-\mathrm{P}-\mathrm{PPh}_{2} \mathrm{Py}_{2}\right)^{2}\right]^{+}$and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{IrCl}\left(\kappa^{1}-\mathrm{P}-\right.\right.$ $\left.\mathrm{PPh}_{2} \mathrm{Py}_{2}\right]^{+}{ }^{+} 6$, whereas stirring in methanol at room temperature gives $\mathrm{P}-\mathrm{N}$-chelating complexes of the type $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}\left(\kappa^{2}-\mathrm{P}-\mathrm{N}_{-}-\mathrm{PPh}_{2} \mathrm{Pyy}^{2}\right]^{+} 7\right.$ and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{IrCl}\left(\kappa^{2}-\mathrm{P}-\mathrm{N}-\mathrm{PPh}_{2} \mathrm{Pyy}^{2}\right]^{+} 8\right.$. Neutral κ^{1}-P-coordinated complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\left(\kappa^{1}-\mathrm{P}-\mathrm{PPh}_{2} \mathrm{Py}^{2}\right)\right] 3$ and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{IrCl}_{2}\left(\kappa_{2}-\mathrm{P}-\mathrm{PPh}_{2} \mathrm{Py}_{3}\right)\right] 4$ easily undergo conversion to the cationic P -, N -chelating complexes $\left[\left(\eta^{3}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}\left(\kappa^{2}-\mathrm{P}-\mathrm{N}-\mathrm{PPh} 2 \mathrm{Py}\right)\right]^{+} 7$ and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{IrCl}\left(\mathrm{K}^{2}-\mathrm{P}, \mathrm{N}-\mathrm{PPh}_{2} \mathrm{Py}\right)\right]^{+} \mathbf{8}$ on stirring in methanol at room temperature. These complexes are characterized by FT-IR and FT-NMR spectroscopy as well as analytical methods. The molecular structures of the representative complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\left(\mathrm{~K}^{1}-\mathrm{P}-\mathrm{PPh}_{2} \mathrm{Py}\right)\right] \mathbf{3},\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{IrCl}_{2}\left(\mathrm{~K}^{1}-\mathrm{P}-\mathrm{PPh}_{2} \mathrm{Py}^{2}\right)\right] \mathbf{4}$ and hexafluorophosphate salt of complex $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{IrCl}\left(\mathrm{\kappa}^{2}-\mathrm{P}-\mathrm{PPh}_{2} \mathrm{Py}\right)_{2}\right]^{+} \mathbf{6}$ are established by singlecrystal X-ray diffraction methods.

Keywords. Pentamethylcyclopentadienyl; diphenyl-2-pyridylphosphine; rhodium and iridium complexes.

1. Introduction

The dimeric chloro-bridged complexes $\left[\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right.\right.$ $\mathrm{M}(\mu-\mathrm{Cl}) \mathrm{Cl}\}_{2}$] $(\mathrm{M}=\mathrm{Rh}$ or Ir) have been the subject of investigation by many research groups as they are very useful starting materials. ${ }^{1}$ These complexes display some rich chemistry by cleavage of the chlorobridge, leading to the formation of a series of interesting neutral and cationic mononuclear complexes. ${ }^{2}$ We earlier reported on the reactivity differences of p-cymene and hexamethylbenzene ruthenium dimers towards diphenyl(2-pyridyl)phosphine ${ }^{3}$; there is also one report available on the reaction of this ligand with $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}\right]$. ${ }^{4}$

Phosphines are among the most important ligands in organometallic chemistry, with a wide range of steric and electronic properties. They have found

[^0]widespread application in transition metal-catalysed asymmetric syntheses. The catalytic activity of these complexes ranges from hydrogen transfer ${ }^{5}$ to ringclosing metathesis. ${ }^{6}$ Diphenyl(2-pyridyl)phosphine (figure 1) is a versatile ligand which can coordinate to the metal in mono-dentate, chelate and bridge form, depending on the requirements at the metal centre. ${ }^{7,8}$ Preliminary reactions of this ligand with dimers have been reported earlier. ${ }^{9}$

Figure 1. Structure of diphenyl(2-pyridyl)phosphine ligand.

Herein, we present the syntheses of pentamethylcyclopentadienyl rhodium and iridium complexes containing $\mathrm{PPh}_{2} \mathrm{Py}$ in neutral mono-dentate, bidentate or chelating mode.

2. Experimental

All solvents were dried and distilled before use, following standard procedures. $\mathrm{RhCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ and IrCl_{3}. $\mathrm{xH}_{2} \mathrm{O}$ were purchased from Arora Matthey Ltd and used as such. Pentamethylcyclopentadienyl and di-phenyl(2-pyridyl)phosphine were purchased from Merck and Aldrich respectively, and used as received. The precursor complexes $\left[\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{M}(\mu\right.\right.$ $\left.\mathrm{Cl})\}_{2} \mathrm{Cl}_{2}\right]\{$ where $\mathrm{M}=\operatorname{Rh}(\mathbf{1}), \operatorname{Ir}(\mathbf{2})\}$ were prepared according to known methods. ${ }^{10}$ Elemental analyses were performed on a Perkin-Elmer-2400 CHN/O analyser. Infrared spectra were recorded on a PerkinElmer model 983 spectrophotometer with samples prepared as KBr pellets. Electronic spectra were recorded on a Hitachi-300 spectrophotometer. NMR spectra were recorded on Bruker-AMX-400 (400 MHz) and Bruker-ACF-300 (300 MHz) spectrometers with TMS as internal standard. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts are reported relative to $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \%)$.

2.1 Preparation of $\left[\left(\eta^{5}-C_{5} \mathrm{Me}_{5}\right) M C l_{2}\right.$

$\left.\left(\kappa^{l}-P-P P h_{2} P y\right)\right]\{M=\operatorname{Rh}(\mathbf{3}), \operatorname{Ir}(\mathbf{4})\}$
A mixture of $\left[\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{M}(\mu-\mathrm{Cl}) \mathrm{Cl}\right\}_{2}\right] \quad\{\mathrm{M}=\mathrm{Rh}$ (1), Ir (2) $\}(0.162 \mathrm{mmol})$ and diphenyl-2-pyridylphosphine ($\mathrm{PPh}_{2} \mathrm{Py}$) $(0.405 \mathrm{mmol})$ in dichloromethane $(15 \mathrm{ml})$ were stirred at room temperature for 10 h . The orange solution was concentrated to 3 ml and then excess of hexane was added to precipitate it. The orange microcrystalline product separated out. The orange product was filtered and washed with diethyl ether and dried under vacuum.

Complex 3 - Yield 84% (155 mg). Elemental analysis for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{RhPNCl}_{2}$: calculated - C $56 \cdot 66$, H $5 \cdot 10$, N $2 \cdot 45 \%$; found - C $56 \cdot 47$, H $5 \cdot 06$, N $2 \cdot 50 \%$.
${ }^{1} H$ NMR $\left(C D C l_{3}, \delta\right): 1.39\left(d, 15 \mathrm{H}, J_{\mathrm{P}-\mathrm{H}}=3.44 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right), 7.34-7.54(m, 8 \mathrm{H}), 7.93\left(t, 5 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=\right.$ $8.52 \mathrm{~Hz}), 8.69\left(d, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=6.12 \mathrm{~Hz}, \alpha\right.$-proton of pyridine).

```
\({ }^{31} P \quad\left\{^{l} H\right\} \quad N M R \quad\left(\mathrm{CDCl}_{3}, \quad \delta\right): 28.75 \quad\left(d, \quad J_{\text {Rh-p }}=\right.\) 373.6 Hz ).
```

IR (CsI pellets, cm^{-1}): $\mathrm{v}_{(\mathrm{Rh}-\mathrm{Cl})} 292$ (s). IR (KBr pellets, cm^{-1}): $1626(s), 1434(s), 751(s), 698(s), 579$ (s).
$U V$-visible $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=407 \mathrm{~nm}$.
Complex 4 - Yield 87% (145 mg). Elemental analysis for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{IrPNCl}_{2}$: calculated C $49 \cdot 01, \mathrm{H} 4 \cdot 41, \mathrm{~N}$ $2 \cdot 12 \%$; found - C $49 \cdot 37$, H $4 \cdot 33$, N $2 \cdot 31 \%$.
${ }^{l} H$ NMR $\left(C D C l_{3}, \delta\right): 1.37\left(d, 15 \mathrm{H}, J_{\mathrm{P}-\mathrm{H}}=2.16 \mathrm{~Hz}\right.$, $\mathrm{C}_{5} \mathrm{Me}_{5}$), $7 \cdot 19-7.56(m, 11 \mathrm{H}), 7.89\left(t, 2 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=\right.$ $9.12 \mathrm{~Hz}), 8.68\left(d, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=5.67 \mathrm{~Hz}, \alpha\right.$-proton of pyridine).
${ }^{31} P\left\{{ }^{1} H\right\}$ NMR (CDCl $\left.{ }_{3}, \delta\right): 26 \cdot 17(s)$.
IR (CsI pellets, cm^{-1}): $\mathrm{v}_{(\mathrm{Ir}-\mathrm{Cl})} 286(\mathrm{~s})$. IR (KBr pellets, cm^{-1}): $1633(s), 1573(s), 1447(s), 751(s), 698$ (s), 532 (s).
$U V$-visible $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=363 \mathrm{~nm}$.
2.2a Preparation of $\left[\left(\eta^{5}-C_{5} M e_{5}\right) M C l\left(\kappa^{l}-P-P P h_{2} P y\right)_{2}\right]$ $P F_{6}\{M=R h(5), \operatorname{Ir}(6)\}:$ A mixture of $\left[\left\{\left(\eta^{5}-\right.\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{M}(\mu-\mathrm{Cl}) \mathrm{Cl}\right\}_{2}\right]\{\mathrm{M}=\operatorname{Rh}(\mathbf{1}), \operatorname{Ir}(\mathbf{2})\}(0.162 \mathrm{mmol})$ and diphenyl(2-pyridyl)phosphine $\left(\mathrm{PPh}_{2} \mathrm{Py}\right)(0.81 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.81 \mathrm{mmol})$ in methanol $(20 \mathrm{ml})$ were refluxed for 4 h . The yellow solution was concentrated under reduced pressure. The yellow residue was dissolved in dichloromethane and filtered. The filtrate was concentrated to 2 ml and an excess of hexane was added for precipitation. The yellowcoloured product was filtered and washed with diethyl ether and dried under vacuum.

Complex 5 - Yield 85% (260 mg). Elemental analysis for $\mathrm{C}_{44} \mathrm{H}_{43} \mathrm{RhP}_{3} \mathrm{~N}_{2} \mathrm{ClF}_{6}$: calculated - C 56.92 , H 4.58 , N 2.96%; found - C 56.94 , H 4.78 , N 2.01%.
${ }^{1} H$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 1.67\left(d, 15 \mathrm{H}, J_{\mathrm{P}-\mathrm{H}}=4.64\right.$, $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right), 7.39-8.07(m, 22 \mathrm{H}), 8.30\left(t, 2 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=\right.$ $6.13 \mathrm{~Hz}), 8.56\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=4.56 \mathrm{~Hz}\right), 8.79(d, 2 \mathrm{H}$, $J_{\mathrm{H}-\mathrm{H}}=4.75 \mathrm{~Hz}, \alpha$-proton of pyridine).
${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl $\left.3, \delta\right):-12 \cdot 35(s)$.
IR (CsI pellets, cm^{-1}): $\mathrm{v}_{(\mathrm{Rh}-\mathrm{Cl})} 248(\mathrm{~s})$. IR (KBr pellets, cm^{-1}): $1639(m), 1580(m), 1440(s), 844(s), 744(s)$, $698(s), 551(s)$.
$U V$-visible $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=394 \mathrm{~nm}$.
Complex 6 - Yield 81% (210 mg). Elemental analysis for $\mathrm{C}_{44} \mathrm{H}_{43} \mathrm{IrP}_{3} \mathrm{~N}_{2} \mathrm{ClF}_{6}$: calculated - C $51 \cdot 09, \mathrm{H} 4 \cdot 15$, N $1 \cdot 70 \%$; found - C $51 \cdot 13$, H $4 \cdot 19$, N $1 \cdot 82 \%$.
${ }^{1} H$ NMR $\left(C D C l_{3}, \delta\right): 1.18\left(d, 15 \mathrm{H}, J_{\mathrm{P}-\mathrm{H}}=2.30 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right), 7.05-7.55(\mathrm{~m}, 26 \mathrm{H}), 8.45\left(d, 2 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=\right.$ $5.36 \mathrm{~Hz}, \alpha$-proton of pyridine).
${ }^{31} P\left\{{ }^{l} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right):-10.57(\mathrm{~s})$.
IR (CsI pellets, cm^{-1}): $\mathrm{v}_{(\mathrm{Ir}-\mathrm{Cl})} 254(\mathrm{~s})$.
IR (KBr pellets, cm^{-1}): $1626(\mathrm{~m}), 1447(\mathrm{~s}), 844(\mathrm{~s})$, $751(s), 704(s), 565(s), 525(s)$.
UV-visible $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}=413 \mathrm{~nm}$.
2.2b Preparation of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{MCl}\left(\kappa^{2}-\mathrm{P}-\mathrm{N}-\mathrm{PPh}_{2} \mathrm{Py}\right)\right]$ $P F_{6}\{M=\operatorname{Rh}(7), \operatorname{Ir}(\mathbf{8})\}-$ Method 1: A mixture of $\left[\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{M}(\mu-\mathrm{Cl}) \mathrm{Cl}\right\}_{2}\right] \quad\{\mathrm{M}=\mathrm{Rh} \quad$ (1), $\quad \operatorname{Ir} \quad(\mathbf{2})\}$ ($0 \cdot 162 \mathrm{mmol}$), diphenyl(2-pyridyl)phosphine $\left(\mathrm{PPh}_{2} \mathrm{Py}\right)$ (0.324 mmol) and $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.405 \mathrm{mmol})$ in methanol $(20 \mathrm{ml})$ was stirred at room temperature for 2 h . The yellow solution was concentrated under reduced pressure. The yellow residue was dissolved in dichloromethane and filtered. The filtrate was concentrated to 2 ml and an excess of hexane was added for precipitation. The yellow-coloured product was filtered and washed with diethyl ether and dried under vacuum.

Method 2: A mixture of the complex $\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{MCl}_{2}\left(\kappa^{1}-\mathrm{P}_{-}-\mathrm{PPh}_{2} \mathrm{Py}\right)\right] \quad\{\mathrm{M}=\mathrm{Rh} \quad$ (3), $\operatorname{Ir} \quad(4)\}$ $(0.162 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.486 \mathrm{mmol})$ in methanol $(15 \mathrm{ml})$ was stirred at room temperature for 4 h . The clear orange yellow solution was then rotary evaporated. The residue was extracted with dichloromethane and filtered to remove insoluble material. The filtrate was then reduced to about 2 ml and addition of excess hexane gave yellow solid.

Complex 7 - Yield 82% (180 mg). Elemental analysis for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{RhClNP}_{2} \mathrm{~F}_{6}$: calculated - C $47 \cdot 56, \mathrm{H}$ 4.28 , N $2 \cdot 05 \%$; found - C $47 \cdot 23$, H 4.56 , N $2 \cdot 17 \%$.
${ }^{1} H$ NMR $\left(C D C l_{3}, \delta\right): 1.68\left(d, 15 \mathrm{H}, J_{\mathrm{P}-\mathrm{H}}=4.68 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right), 7.55-7.61(m, 8 \mathrm{H}), 7 \cdot 83-8.07(m, 5 \mathrm{H}), 8.55$ $\left(d, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=4.96 \mathrm{~Hz}\right), \alpha$-proton of pyridine $)$.
${ }^{31} P \quad\left\{{ }^{l} H\right\} \quad N M R \quad\left(C D C l_{3}, \quad \delta\right):-12.49 \quad\left(d, \quad J_{\mathrm{Rh}-\mathrm{P}}=\right.$ 288 Hz).
IR (CsI pellets, cm^{-1}): $\mathrm{v}_{(\mathrm{Rh}-\mathrm{Cl})} 258(\mathrm{~s})$.
IR (KBr pellets, cm^{-1}): $1626(\mathrm{~s}), 1440(\mathrm{~s}), 1394(\mathrm{~m})$, $1102(m), 844(s), 758(s), 698(s), 565(s)$.
UV-visible $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=379 \mathrm{~nm}$.
Complex 8 - Yield 85% (165 mg). Elemental analysis for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{IrClNP}_{2} \mathrm{~F}_{6}$: calculated - C 42.05 , H 3.79, N 1.82%; found - C 39.73 , H 3.82 , N 1.86%.
${ }^{1} H$ NMR $\left(C D C l_{3}, \delta\right): 1.69\left(d, 15 \mathrm{H}, J_{\mathrm{P}-\mathrm{H}}=3.08 \mathrm{~Hz}\right.$, $\mathrm{C}_{5} \mathrm{Me}_{5}$), 7.46-7.66 ($m, 8 \mathrm{H}$), 7•85-8.13 ($m, 5 \mathrm{H}$), $8 \cdot 52$ $\left(d, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=5.32 \mathrm{~Hz}, \alpha\right.$-proton of pyridine).
${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right)$: $-32 \cdot 10(\mathrm{~s})$.
IR (CsI pellets, cm^{-1}): $\mathrm{v}_{(\mathrm{Ir}-\mathrm{Cl})} 272(\mathrm{~s})$.
IR (KBr pellets, cm^{-1}): $1626(\mathrm{~s}), 1447(\mathrm{~s}), 1387(\mathrm{~m})$, $1096(m), 844(s), 744(s), 698(s), 559(s)$.
UV-visible $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=364 \mathrm{~nm}$.

3. Structure analysis and refinement

Single crystals of compounds $\mathbf{3}$ and $\mathbf{4}$ suitable for Xray analyses were grown by slow diffusion of hex-
ane into dichloromethane solutions of the respective complexes. Single crystals of compound $6\left[\mathrm{PF}_{6}\right]$ were formed by slow diffusion of diethyl ether into chloroform solution. X-ray intensity data were collected on a Rigaku Mercury CCD area detector employing graphite-monochromated $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71069 \AA)$ at a temperature of 143 K . The intensity data were corrected for Lorentz and polarization effects; absorption correction was carried using the REQAB program. ${ }^{11}$

The structure was solved by direct methods (SIR97). ${ }^{12}$ Refinement was performed by a full-matrix least squares method based on F^{2} using SHELXL97. ${ }^{13}$ The weighting scheme used was $W=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+\right.$ $\left.0 \cdot 0094 P^{2}+0 \cdot 0000 P\right]$ for complex 3 and $W=$ $1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+0 \cdot 0000 P^{2}+0 \cdot 00007 P\right]$ for complex $\mathbf{4}$, where $P=\left(F_{0}^{2}+2 F_{c}^{2}\right) / 3$. Non-hydrogen atoms were refined anisotropically, while hydrogen atoms were refined using a "riding" model. Refinement converged at final values of $R=0.0206,0.0251,0.0431$ for the compounds $\mathbf{3}, 4$ and $6\left[\mathrm{PF}_{6}\right]$ respectively (for observed data F), and at values of $w R_{2}=0.0351$, $0.0451,0.1039$ for complexes $\mathbf{3}, 4$ and 6 respectively (for unique reflections).

Table 1 lists the lattice constants, data collection and refinement parameters. Figures 2, 3, and 4 are ORTEP 14 representations of thermal ellipsoids of complexes $\mathbf{3}$ and 4, displayed with 30% probability, and of the hexafluorophosphate salt of complex 6 , shown with 50% probability. Tables 2,3 and 4 give selected bond lengths and angles for complexes 3, 4 and 6 respectively.

4. Results and discussion

Reaction of $\left[\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{M}(\mu-\mathrm{Cl}) \mathrm{Cl}\right\}_{2}\right] \quad\{\mathrm{M}=\mathrm{Rh}$ (1), $\operatorname{Ir}(2)\}$ with diphenyl(2-pyridyl)phosphine in dichloromethane yields neutral P-coordinated complexes 3 and 4. The same reaction in methanol under refluxing conditions yields the bis-P-coordinated complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{M}\left(\kappa^{1}-\mathrm{P}-\mathrm{PPh}_{2} \mathrm{Py}\right)_{2} \mathrm{Cl}\right]^{+}, \mathrm{M}=\mathrm{Rh}$ (5) and Ir (6), which were isolated as hexafluorophosphate salts (scheme 1). In methanol under stirring conditions the $\mathrm{P}-, \mathrm{N}$-chelated cationic complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{M}\left(\kappa^{2}-\mathrm{P}-\mathrm{N}-\mathrm{PPh}_{2} \mathrm{Py}\right) \mathrm{Cl}\right]^{+}, \mathrm{M}=\mathrm{Rh}(7)$ and Ir (8) are isolated as hexafluorophosphate salts. Complexes $\mathbf{3}$ and $\mathbf{4}$ with excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in methanol under stirring condition yield the compounds $7\left[\mathrm{PF}_{6}\right]$ and $8\left[\mathrm{PF}_{6}\right]$ (scheme 1) respectively. These complexes are stable in air and soluble in polar solvents such as chloroform and dichloromethane,

Table 1. Crystal data and structure refinement details for complexes 3, 4, and $6\left[\mathrm{PF}_{6}\right] .0 \cdot 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

CCDC	270852 (3)	270853 (4)	270854 (6)
Formula	$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NPCl}_{2} \mathrm{Rh}$	$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NPCl}_{2} \mathrm{Ir}$	$\mathrm{C}_{44} \mathrm{H}_{43} \mathrm{ClF}_{6} \mathrm{IrN}_{2} \mathrm{P}_{3} .0 \cdot 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
M_{r}	572.29	661.58	$1076 \cdot 83$
T (K)	143(1)	143(1)	293(2)
Wavelength (\AA)	0.71069	0.71069	0.71073
Crystal system	Orthorhombic	Orthorhombic	Triclinic
Space group	Pna21	Pna2 ${ }_{1}$	P1
a (A)	31.521(2)	31.511(2)	10.0851(8)
b (\AA)	8.8700(5)	8.9019(5)	10.9150(8)
c (\AA)	17.8014(10)	17-8297(11)	23.7481(18)
$\alpha{ }^{(}{ }^{\circ}$	90	90	77.030(1)
$\beta\left({ }^{\circ}\right)$	90	90	78.269(1)
$\gamma\left({ }^{\circ}\right)$	90	90	64.778(1)
$V\left(\AA^{3}\right)$	4977-1(5)	5001.4(5)	2287.3(3)
Z	8	8	1
Crystal size (mm^{3})	$0.32 \times 0.22 \times 0.20$	$0.25 \times 0.15 \times 0.10$	$0.10 \times 0.12 \times 0.30$
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.528	1.757	1.563
$F(000)$	2336	2592	1070
$\theta\left({ }^{\circ}\right)$	2.57 to 27.48	2.56 to 27.48	1.77 to 28.27
Reflections collected	21513	22872	18936
Independent reflections	$9805[R(\mathrm{int})=0.0186]$	$8810[R($ int $)=0.0361]$	$17294[R($ int $)=0.0160]$
Completeness to θ	27.48-98.6\%	27.48-98.6\%	28.27-89.1\%
$\mu(\mathrm{Mo}-\mathrm{K} \alpha)\left(\mathrm{mm}^{-1}\right)$	9.81	5.633	$3 \cdot 198$
Data/parameters	9805/1/588	8810/1/588	17294/5/843
Goodness-of-fit on F^{2}	0.880	0.876	1.059
$R 1(I>2 \sigma(I), w R 2$	$0.0206,0.0351$	0.0251, 0.0451	0.0431, 0.1039
$R 1, R 2$ (all data)	$0.0238,0.0359$	0.0281, 0.0471	0.0541, 0.1098
Largest diff. peak and hole $\left(e . \AA^{-3}\right)$	+0.523 \& -0.506	+1.341 \& -1.052	1.491 \& -0.471

Figure 2. ORTEP diagram of complex 3 with 30% probability thermal ellipsoids. Hydrogens are omitted for clarity.
but insoluble in non-polar solvents such as hexane and pentane.

Figure 3. ORTEP diagram of complex 4 with 30% probability thermal ellipsoids. Hydrogens are omitted for clarity.

4.1 Mono-dentate neutral complexes $\mathbf{3}$ and 4

Spectroscopic data suggest coordination of the ligand to the metal in mono-dentate fashion as evident from

Table 2. Selected bond lengths (A) and bond angles $\left({ }^{\circ}\right)$ for complex 3.

Bond lengths					
$\operatorname{Rh}(1)-\mathrm{P}(1)$	$2 \cdot 3165(7)$	$\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$2 \cdot 4107(7)$	$\mathrm{Rh}(1)-\mathrm{Cl}(2)$	$2 \cdot 4005(6)$
$\mathrm{Rh}\left(1^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)$	$2 \cdot 3171(7)$	$\mathrm{Rh}\left(1^{\prime}\right)-\mathrm{Cl}\left(1^{\prime}\right)$	$2 \cdot 3904(7)$	$\mathrm{Rh}\left(1^{\prime}\right)-\mathrm{Cl}\left(2^{\prime}\right)$	$2 \cdot 4030(6)$
$\mathrm{Rh}(1)-\mathrm{C}^{*}$	$1 \cdot 8174(2)$	$\mathrm{Rh}\left(1^{\prime}\right)-\mathrm{C}^{*}$	$1 \cdot 8236(2)$		
Bond angles					
$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$88 \cdot 43(2)$	$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{Cl}(2)$	$89 \cdot 03(2)$		
$\mathrm{Cl}(1)-\mathrm{Rh}(1)-\mathrm{Cl}(2)$	$93 \cdot 34(2)$	$\mathrm{P}\left(1^{\prime}\right)-\mathrm{Rh}\left(1^{\prime}\right)-\mathrm{Cl}\left(1^{\prime}\right)$	$89 \cdot 54(2)$		
$\mathrm{P}\left(1^{\prime}\right)-\mathrm{Rh}\left(1^{\prime}\right)-\mathrm{Cl}\left(2^{\prime}\right)$	$86 \cdot 59(2)$	$\mathrm{Cl}\left(1^{\prime}\right)-\mathrm{Rh}\left(1^{\prime}\right)-\mathrm{Cl}\left(2^{\prime}\right)$	$93 \cdot 04(2)$		

*Rhodium to centroid of $\mathrm{Cp} *$

Table 3. Selected bond lengths ((\AA) and bond angles $\left({ }^{\circ}\right)$ for complex 4.

Bond lengths					
$\operatorname{Ir}(1)-\mathrm{P}(1)$	$2 \cdot 299(2)$	$\operatorname{Ir}(1)-\mathrm{Cl}(1)$	$2 \cdot 3990(14)$	$\operatorname{Ir}(1)-\mathrm{Cl}(2)$	$2 \cdot 4076(13)$
$\operatorname{Ir}\left(1^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)$	$2 \cdot 299(2)$	$\operatorname{Ir}\left(1^{\prime}\right)-\mathrm{Cl}\left(2^{\prime}\right)$	$2 \cdot 4056(14)$	$\operatorname{Ir}\left(1^{\prime}\right)-\mathrm{C}^{*}$	$1 \cdot 8246(2)$
$\operatorname{Ir}(1)-\mathrm{C}^{*}$	$1 \cdot 8297(2)$	$\operatorname{Ir}\left(1^{\prime}\right)-\mathrm{Cl}\left(1^{\prime}\right)$	$2 \cdot 411(2)$		
Bond angles					
$\mathrm{P}(1)-\operatorname{Ir}(1)-\mathrm{Cl}(1)$	$90 \cdot 08(5)$	$\mathrm{P}(1)-\mathrm{Ir}(1)-\mathrm{Cl}(2)$	$86 \cdot 86(5)$		
$\mathrm{Cl}(1)-\operatorname{Ir}(1)-\mathrm{Cl}(2)$	$90 \cdot 21(5)$	$\mathrm{P}\left(1^{\prime}\right)-\operatorname{Ir}\left(1^{\prime}\right)-\mathrm{Cl}\left(1^{\prime}\right)$	$88 \cdot 61(5)$		
$\mathrm{P}\left(1^{\prime}\right)-\operatorname{Ir}\left(1^{\prime}\right)-\mathrm{Cl}\left(2^{\prime}\right)$	$89 \cdot 53(5)$	$\mathrm{Cl}\left(1^{\prime}\right)-\mathrm{r}\left(1^{\prime}\right)-\mathrm{Cl}\left(2^{\prime}\right)$	$90.65(6)$		

*Iridium to centroid of Cp *

Table 4. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for complex 6.

Bond lengths					
$\operatorname{Ir}(\mathrm{A})-\mathrm{P}(1 \mathrm{~A}) \quad 2.3$	2.316(3)) $\quad \operatorname{Ir}(\mathrm{A})-\mathrm{P}(2 \mathrm{~A})$	2.347(3)	$\operatorname{Ir}(\mathrm{A})-\mathrm{Cl}(\mathrm{A})$	2.387(3)
$\operatorname{Ir}(\mathrm{A})-\mathrm{C}^{*} \quad 1.9$	1.957		1.864		
Bond angles					
$\mathrm{P}(1 \mathrm{~A})-\mathrm{Ir}(\mathrm{A})-\mathrm{Cl}(\mathrm{A})$		93.21(12)	$\mathrm{P}(2 \mathrm{~A})-\mathrm{Ir}(\mathrm{A})-\mathrm{Cl}(\mathrm{A})$		89.45(12)
$\mathrm{P}(1 \mathrm{~A})-\operatorname{Ir}(\mathrm{A})-\mathrm{P}(2 \mathrm{~A})$		95.27(11)	$\mathrm{P}(1 \mathrm{~B})-\operatorname{Ir}(\mathrm{B})-\mathrm{Cl}(\mathrm{B})$		91.76(12)
$\mathrm{P}(2 \mathrm{~B})-\operatorname{Ir}(\mathrm{B})-\mathrm{Cl}(\mathrm{B})$		91.49(12)	$\mathrm{P}(1 \mathrm{~B})-\operatorname{Ir}(\mathrm{B})-\mathrm{P}(2 \mathrm{~B})$		95•16(13)

*Iridium to centroid of Cp *

Scheme 1. Synthetic pathways.

Figure 4. ORTEP diagram of complex 6 with 50% probability thermal ellipsoids. Hydrogens are omitted for clarity.
the presence of proton peaks of the ligand and shift of Cp* resonance in the proton NMR spectra compared to the starting complexes $\mathbf{1}$ and $\mathbf{2}$. The ${ }^{1} \mathrm{H}$ NMR spectra of complexes $\mathbf{3}$ and $\mathbf{4}$ show doublets at 1.39 and 1.37 ppm for the methyl protons of the pentamethylcyclopentadienyl group, which arise from the coupling of the pentamethylcyclopentadienyl group protons with the phosphine ligand $\left(J_{\mathrm{P}-\mathrm{H}}=3.44\right.$ Hz for complex 3 and $J_{\mathrm{P}-\mathrm{H}}=2 \cdot 16 \mathrm{~Hz}$ for complex 4). ${ }^{9}$ Multiplets in the aromatic region at $7 \cdot 19-7.93 \mathrm{ppm}$ for the phosphine ligand are also observed. The doublet at $8.69 \mathrm{ppm}\left(J_{\mathrm{H}-\mathrm{H}}=6.12 \mathrm{~Hz}\right)$ for complex 3 and at $8.68 \mathrm{ppm}\left(J_{\mathrm{H}-\mathrm{H}}=5.67 \mathrm{~Hz}\right)$ for complex 4 arises from the α-proton of the pyridine group of the $\mathrm{PPh}_{2} \mathrm{Py}$ ligand. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex 3 shows one doublet at 28.75 ppm for the phosphine ligand, due to rhodium-phosphorous coupling ($J_{\mathrm{Rh}-\mathrm{P}}=$ 373.6 Hz), and a singlet at 26.17 ppm for complex 4. The $\mathrm{PPh}_{2} \mathrm{Py}$ ligand exhibits a significant downfield shift after coordination to the metal as compared to the free ligand. The far-IR spectrum shows a strong band at 286-292 cm^{-1} for the $\mathrm{M}-\mathrm{Cl}$ stretching vibration mode.

4.2 Bi-substituted cationic complexes 5 and 6

These complexes are isolated as yellow solids and are fully characterized by elemental, infrared and NMR spectra. ${ }^{1} \mathrm{H}$ NMR spectra of complexes 5 and 6, exhibit resonances corresponding to pentamethylcyclopentadienyl protons, observed as doublets at $1.67 \mathrm{ppm}\left(J_{\mathrm{P}-\mathrm{H}}=4.64 \mathrm{~Hz}\right)$ and at $1.18 \mathrm{ppm}\left(J_{\mathrm{P}-\mathrm{H}}=\right.$ 2.30 Hz), both arising due to Cp^{*} protons coupling with the phosphine of the $\mathrm{PPh}_{2} \mathrm{Py}$ ligand. It is interesting to observe that the chemical shift of the Cp* group moves downfield in the case of the rhodium complex and upfield in the iridium complex. The doublets observed at $8.79 \mathrm{ppm}\left(J_{\mathrm{H}-\mathrm{H}}=4.75 \mathrm{~Hz}\right)$ for complex 5 and $8.45 \mathrm{ppm}\left(J_{\mathrm{H}-\mathrm{H}}=5.36 \mathrm{~Hz}\right)$ for complex 6 in the proton NMR spectra are assigned to the α-proton of the pyridine ring in the $\mathrm{PPh}_{2} \mathrm{Py}$ ligand. The phenyl group of the phosphine ligand exhibits multiplets in the range of $7 \cdot 05-8.56 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of complexes 5 and $\mathbf{6}$ show singlets at -12.35 ppm and -10.57 ppm . It is interesting to note that in these complexes the ${ }^{31} \mathrm{P}$ nuclei of $\mathrm{PPh}_{2} \mathrm{Py}$ exhibits an upfield shift as compared to the free ligand and neutral compounds ($\mathbf{3}$ and $\mathbf{4}$). It is difficult to rationalize the upfield shift, which may be due to the high electron density on the metal centre arising from the two $\mathrm{PPh}_{2} \mathrm{Py}$ ligands. Owing to the high
electron density on the metal centre, one can expect that the degree of back-bonding increases from metal to ligand $(d \pi-p \pi)$ in comparison with the other compounds. Presence of a single peak for two $\mathrm{PPh}_{2} \mathrm{Py}$ indicates that the both phosphines are in the same environment.

4.3 Chelating complexes 7 and 8

The ${ }^{1} \mathrm{H}$ NMR spectra of complexes 7 and $\mathbf{8}$ show patterns of signals different from that of complexes 3 and 4. The α-proton of the pyridine appears as a doublet at $8.55 \mathrm{ppm}\left(J_{\mathrm{H}-\mathrm{H}}=4.96 \mathrm{~Hz}\right)$ for complex 7 and at $8.52 \mathrm{ppm}\left(J_{\mathrm{H}-\mathrm{H}}=5.32 \mathrm{~Hz}\right)$ for complex 8 . The phenyl group protons appear as multiplets in the aromatic region at $7.46-8.13 \mathrm{ppm}$. The pentamethylcyclopentadienyl group exhibits doublets at 1.68 ppm (complex 7) and 1.69 ppm (complex 8) respectively. The doublets arise due to coupling between the $\mathrm{C} p^{*}$ protons and the phosphorus of the $\mathrm{PPh}_{2} \mathrm{Py}$ ligand. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex 7 exhibits a doublet at $-12.49 \mathrm{ppm}\left(J_{\mathrm{Rh}-\mathrm{P}}=\right.$ 288 Hz) due to coupling between the phosphorus of the $\mathrm{PPh}_{2} \mathrm{Py}$ ligand and the rhodium metal centre. Complex 8 exhibits a singlet at $-32 \cdot 10 \mathrm{ppm}$ for chelated $\mathrm{PPh}_{2} \mathrm{Py}$. In the case of complex $\mathbf{8}$, the ${ }^{31} \mathrm{P}$ NMR shift moves upfield as compared to the other complexes and there is also significant difference between the rhodium and iridium complexes in the shift positions as compared to other complexes in this series. The far-infrared spectrum shows bands at 258 and $272 \mathrm{~cm}^{-1}$, which are assigned to the terminal stretching vibration mode $\mathrm{v}_{\mathrm{M}-\mathrm{Cl}}$ of compounds 7 and 8. In addition, the strong band observed at $844 \mathrm{~cm}^{-1}$ is due to the V_{P-F} mode of the PF_{6}^{-}group.

5. Molecular structures

In order to confirm the structures suggested by the spectroscopic data, molecular structures of complexes 3 and 4, and the hexafluorophosphate salt of complex 6 were determined by using single-crystal X-ray diffraction studies. The summary of the sin-gle-crystal X-ray structure analysis is shown in table 1. ORTEP drawings of compounds $\mathbf{3}, 4$ and $\mathbf{6}\left[\mathrm{PF}_{6}\right]$ are shown in figures 2,3 , and 4 respectively. All the compounds have two independent molecules in the unit cell.

The structures of complexes $\mathbf{3}$ and $\mathbf{4}$ consist of rhodium and iridium atoms η^{5}-coordinated to a pentamethylcyclopentadienyl molecule, two chloride atoms and one diphenyl(2-pyridyl)phosphine ligand (through the P atom) leading to the usual 'three-
legged piano stool' structure. Complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right.$ $\left.\mathrm{RhCl}_{2}\left(\kappa^{1}-\mathrm{P}-\mathrm{PPh}_{2} \mathrm{Py}\right)\right] 3$ and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{IrCl}_{2}\left(\kappa^{1}-\mathrm{P}-\right.\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{Py}\right)\right] 4$ crystallise in the orthorhombic space group Pna_{1} (table 1). The geometry around the metal atom in compounds $\mathbf{3}$ and $\mathbf{4}$ may be regarded as octahedral considering that the pentamethylcyclopentadienyl group occupies three coordination positions. The $\mathrm{M}-\mathrm{Cl}(1)$ and $\mathrm{M}-\mathrm{Cl}(2)$ bond distances are indistinguishable ($\sim 2.4 \AA$), are close to reported values ${ }^{15}$ and also similar to the $\mathrm{M}-\mathrm{Cl}$ bond distances in the second molecule. M-P bond distances of $2 \cdot 3165(7)$ and $2 \cdot 299(2) \AA$ are consistent with the distances of the cyclopentadienyl analogue of the rhodium phosphine complex ($2 \cdot 3089(8) \AA)^{9}$. The centroid distance of the ring to the metal is $1.8174(2) \AA$ for complex 3 and $1.8297(2) \AA$ for complex 4 . The bond angles in complex 4 , namely, $\mathrm{P}(1)-\operatorname{Ir}(1)-\mathrm{Cl}(1), \mathrm{P}(1)-\operatorname{Ir}(1)-\mathrm{Cl}(2)$ and $\mathrm{Cl}(1)-\operatorname{Ir}(1)-$ $\mathrm{Cl}(2)$, are $90 \cdot 08(5)^{\circ}, 86 \cdot 86(5)^{\circ}$ and $90 \cdot 21(5)^{\circ}$ respectively, one similar to those in complex 3 and are characteristic of piano-stool type structures.

The hexafluorophosphate salt of complex $\mathbf{6}$ adopts a three-legged piano-stool structure with the chloride and two phosphorus atoms as the legs and with the π-bonded pentamethylcyclopentadienyl moiety occupying three facial coordination sites. The centroid distance in molecule A between the iridium atom and pentamethylcyclopentadienyl is $1.957 \AA$, which is longer than that in the molecule B ($1.864 \AA$). There is no significant difference in the $\mathrm{C}-\mathrm{C}$ bond lengths in the pentamethylcyclopentadienyl ring, all being $1.42 \AA$ and pointing to a π-electron delocalization in the ring. Further, the five-membered ring is planar, as evident from the nearly equal bond distances between the metal atom and the ring carbons. The iridium-chlorine bond length ($2 \cdot 387(3) \AA$) is within the range reported for half-sandwich pentamethylcyclopentadienyl iridium complexes ${ }^{16}$ containing an iridium-chlorine bond. The Ir-P1A and Ir-P2A bond lengths are 2.316(3) \AA and 2.347(3), which are similar to those in molecule B. The bond angles P1A-IrA-ClA $\left(93.21^{\circ}\right)$, P2A-IrA-ClA (89.45°), P1A-IrA-P2A $\left(95 \cdot 27^{\circ}\right)$ confirm the piano-stool structure of the complex.

6. Concluding remarks

We have synthesized new η^{5}-pentamethylcyclopentadienyl rhodium(III) and iridium(III) complexes containing diphenyl(2-pyridyl)phosphine ligand. Under refluxing conditions, pentamethylcyclopentadienyl rhodium and iridium dimers with $\mathrm{PPh}_{2} \mathrm{Py}$ ligand
yield the di-substituted bis-phosphine complexes, which may be due to the high electron density and larger size of the metal atom. This high electron density on the metal is perhaps the result of charge donation by the $\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$ moiety.

Supplementary material

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications: No. CCDC 270852 for complex 3, 270853 for complex 4 and 270854 for complex 6. The data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +(44)-1223/336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www. ccdc.cam.ac.uk).

References

1. (a) Maitlis P M 1995 J. Organomet. Chem. 500 239; (b) Abel E W, Stone F G A and Wilkinson G (eds) 1982-1994 Comprehensive organometallic chemistry II: A review of the literature $\mathbf{8} 177$
2. (a) Joubran C, Grotjahn D B and Hubbard J L 1996 Organometallics 15 1230; (b) Carmona, E, Cingolani A, Marchetti F, Pettinari C, Pettinari R, Skelton B W and White A H 2003 Organometallics 22 2820; (c) Steinke T, Gemel C, Cokoja M, Winter M and Fischer R A 2003 Chem. Commun. 9 1066; (d) Ara I, Berenguer J R, Eguizabal E, Fornie J, Lalinde E and Martin A 2001 Eur. J. Inorg. Chem. 61631
3. Govindaswamy P, Mozharivskyj Y A and Kollipara M R 2004 Polyhedron 233115
4. Rida M A, Coperet C and Smith A K 2001 J. Organomet. Chem. 6281
5. Hauser C S, Slugove C, Mereiter K, Schimid R, Kirchner K, Xiao L and Weissenteiner W 2001 J. Chem. Soc., Dalton Trans. 2989
6. (a) Frstner A, Picquet M, Bruneau C and Dixneuf P H 1998 Chem. Commun. 1315; (b) Soderberg B C G 2003 Coord. Chem. Rev. 241147
7. (a) Alcock N W, Moore P, Lampe P A and Mock K F 1982 J. Chem. Soc., Dalton Trans. 207; (b) Olmstead M M, Maisonnat A, Farr J P and Balch A L 1981 Inorg. Chem. 20 4060; (c) Inoguchi Y, MilewskiMarla B and Schmidbauer H 1982 Chem. Berichte 115 3085; (d) Wasserman H J, Moody D C, Paine R T, Ryan R R and Salazar K V 1984 J. Chem. Soc., Chem. Commun. 533
8. (a) Hong F E, Chang Y C, Chang R E, Lin C C, Wang S L and Liao FL 1999 J. Organomet. Chem. 588 160; (b) Wood F E, Olmstead M M, Farr J P and Balch A L 1985 Inorg. Chim. Acta 97 77; (c) Abram U, Alberto R, Dilworth J R, Zheng Y and Ortner K 1999 Polyhedron 182995
9. Drommi D, Arena C, Nicolo F, Bruno G and Faraone F 1995 J. Organomet. Chem. 485115
10. (a) Booth B L, Haszeldine R N and Hill M 1969 J. Chem. Soc. A1299; (b) White C, Yates A and Maitlis P M 1992 Inorg. Synth. 29228
11. Jacobson R A 1994 REQAB4 (a software program to calculate absorption correction) (private communication)
12. Altomare A, Burla M, Camalli M, Cascarano G, Giacovazzo C, Guagliardi A, Moliterni A, Polidori G and Spagna R J 1999 Appl. Cryst. 32115
13. Sheldrick G M 1997 SHELXL-97: Program for the refinement of crystal structures, University of Göttingen, Germany
14. Johnson C K 1976 ORTEP-II: A Fortran thermal ellipsoid plot program for crystal structure illustrations ORNL-5138
15. Aneetha H, Zacharias P S, Srinivas B, Lee G H and Wang Y 1999 Polyhedron 18299
16. Govindaswamy P and Mozharivskyj Y A and Kollipara M R 2005 Polyhedron 241710

[^0]: *For correspondence

